Cadmium-Induced Adverse Alteration of Reproductive Parameters and Testicular Histoarchitecture of Wistar Rats: Protective Role of Palmitic Acid

Authors

  • Adeniran O. Akinola Department of Physiology, University of Medical Sciences, Ondo City, Ondo State, Nigeria
  • Wahab A. Oyeyemi Department of Physiology, Osun State University Osogbo, Osun State, Nigeria
  • Dayo R. Omotoso Department of Human Anatomy, Redeemer’s University, Ede, Osun State, Nigeria
  • Oore-Oluwapo O. Daramola Department of Physiology, Redeemer’s University, Ede, Osun State, Nigeria
  • Victor O. Emojevwe Department of Physiology, University of Medical Sciences, Ondo City, Ondo State, Nigeria
  • Eunice Ogunwole Department of Physiology, University of Medical Sciences, Ondo City, Ondo State, Nigeria
  • Blessing A. Adetula Department of Physiology, University of Medical Sciences, Ondo City, Ondo State, Nigeria
  • Oluwatobiloba D. Adeleke Department of Physiology, University of Medical Sciences, Ondo City, Ondo State, Nigeria

DOI:

https://doi.org/10.70019/ahas.v1i1.32

Keywords:

Palmitic acid, Cadmium, Sperm parameters, Testicular histoarchitecture, Wistar rats

Abstract

Cadmium (Cd) generates reactive oxygen species (ROS), leading to oxidative stress and adversely affecting reproductive organs and functions. Conversely, palmitic acid (PA) is a free radical scavenger naturally found in palm oil and consumed in diets. This study investigated the protective role of PA against cadmium-induced adverse alteration of male Wistar rats’ reproductive parameters. Twenty mature male Wistar rats were grouped into four (n=5/group): 0.2 mL of 10% Tween 80 (Control); 2 mg/kg bw-Cd; 2 mg/kg bw - Cd+200 mg/kg bw PA; and 200 mg/kg bw PA. PA was given via oral route daily for thirty days, while a single dose of Cd was intraperitoneally given. Serum testosterone, luteinizing hormone (LH), and follicle-stimulating hormone (FSH); testicular concentrations of magnesium, calcium, zinc, and cadmium; epididymal sperm parameters (morphology, motility, viability, and counts) were evaluated, and the testicular histoarchitecture was assessed using standard techniques. Data obtained were statistically analysed and compared using ANOVA at p < 0.05. In comparison to the control group, Cd exposure significantly decreased serum testosterone, FSH, and LH levels; testicular magnesium, calcium and zinc; sperm motility, viability and counts. In addition, cadmium exposure resulted in abnormal sperm morphology and distorted testicular histoarchitecture. The co-administration of Cd and PA in group 3 showed significant reversal of the adverse effect of Cd on reproductive hormones, electrolytes, sperm parameters and testicular histomorphology. Hence, palmitic acid exhibits a protective effect against cadmium-induced adverse alterations of reproductive parameters and testicular histoarchitecture in Wistar rats.

References

Akinola, A. O., Oyeyemi, A. W., Daramola, O. O., & Raji, Y. (2020). Effects of the methanol root extract of Carpolobia lutea on sperm indices, acrosome reaction, and sperm DNA integrity in cadmium-induced reproductive toxicity in male Wistar rats. Brazilian Journal of Assisted Reproduction, 24(4), 454-465.

Akinola, A. O., Wahab, O. A., & Raji, Y. (2021). Carpolobia lutea root extract improved steroidogenic activity in male Wistar rats exposed to cadmium. Nigerian Journal of Physiological Sciences, 36, 181-187.

Akinola, A. O., Oyeyemi, W. A., Omotoso, D. R., Daramola, O. O., & Raji, Y. (2022). Protective role of methanol extract of Carpolobia lutea root against cadmium-induced changes in biochemical and antioxidant indices in liver of male Wistar rats. Ife Journal of Science, 24(1), 59-72.

Arroyo, V. S., Flores, K. M., Ortiz, L. B., Gómez-Quiroz, L. E., & Gutiérrez-Ruiz, M. C. (2012). Liver and cadmium toxicity. Journal of Drug Metabolism and Toxicology, S5-001.

Bertelsmann, H., Sieme, H., Behne, D., & Kyriakopoulos, A. (2007). Is the distribution of selenium and zinc in the sublocations of spermatozoa regulated? Annals of the New York Academy of Sciences, 1095, 204–208.

Cheng, L. C., & Li, L. A. (2012). Flavonoids exhibit diverse effects on CYP 11B1 expression and cortisol synthesis. Toxicology and Applied Pharmacology, 258(3), 343–350. https://doi.org/10.1016/j.taap.2011.11.017

Cottrell, R. C. (1991). Introduction: Nutritional aspects of palm oil. American Journal of Clinical Nutrition, 53, 989–1009.

Elham, Z. H., Mina, K., Fazard, A., & Reza, T. Z. (2016). The antioxidant activity of palmitoleic acid on oxidative stress parameters of palmitic acid in adult rat cardiomyocytes. Annals of Military and Health Sciences Research.

Emojevwe, V., Nwangwa, E. K., Naiho, A. O., Oyovwi, M. O., & Akinola, A. O. Ben-Azu, B. (2022). Toxicological outcome of phthalate exposure on male fertility: Ameliorative impacts of the co-administration of N-acetylcysteine and zinc sulfate in rats. Middle East Fertility Society Journal, 27, 5. https://doi.org/10.1186/s43043-022-00096-5

Emojevwe, V. O., Oyovwi, M. O., Adewole, K. E., Ohwin, P. E., Akinola, A. O., Naiho, A. O., Nwangwa, E. K., Omo-Idonije, V., Lade-Ige, M., & Ben-Azu, B. (2024). N-acetylcysteine and zinc sulphate abate di-2-ethylhexyl phthalate-mediated reproductive dysfunction in rats: Focus on oxidative and sex hormone receptors mechanisms. Asian Pacific Journal of Reproduction, 13(5), 228-240. https://doi.org/10.4103/apjr.apjr_4_24

Fouad, A. A., Qureshi, H. A., Al-Sultan, A. I., Yacoubi, M. T., & Ali, A. A. (2009). Protective effect of hemin against cadmium-induced testicular damage in rats. Toxicology, 257, 153-160.

Golpour, A., Psenicka, M., & Niksirat, H. (2017). Subcellular distribution of calcium during spermatogenesis of zebrafish. Journal of Morphology, 278(8), 1149–1159. https://doi.org/10.1002/jmor.20701

Gunnarsson, D., Nordberg, G., Lundgren, P., & Selstam, G. (2003). Cadmium-induced decrement of the LH receptor expression and cAMP levels in the testis of rats. Toxicology, 183, 57–63.

Hari, M. S., Sayati, M., Bambang, R., & Nastiti, W. (2016). Antioxidant properties of liverwort (Marchantia polymorphia L.) to lead-induced oxidative stress on HEK293 cells. Journal of Biological Sciences, 16, 77–85.

Herranz, L. M., Tebaz, F., Martin, R., et al. (2010). Quantitative changes in rat seminiferous epithelium after chronic administration of low doses of cadmium and zinc: A stereological study. The Open Andrology Journal, 2, 27-36.

Imoisi, O. B., Ilori, G. E., Agho, I., & Ekhator, J. O. (2015). Palm oil, its nutritional, and health implications. Journal of Applied Sciences and Environmental Management, 19(1), 127-133.

Marini, H. R., Micali, A., Squadrito, G., Puzzolo, D., Freni, J., Antonuccio, P., & Minutoli, L. (2022). Nutraceuticals: A New Challenge against Cadmium-Induced Testicular Injury. Nutrients, 14(3), 663. https://doi.org/10.3390/nu14030663.

Martelli, A., Rousselet, E., Dycke, C., Bouron, A., & Moulis, J. M. (2006). Cadmium toxicity in animal cells by interference with essential metals. Biochimie, 88, 1807–1814.

Oyeyemi, A. W., Anyanwu, C. P., Akinola, A. O., Daramola, O. O., Alli, O. B., & Ehiaghe, F. A. (2019). Clomiphene citrate ameliorated lead acetate-induced reproductive toxicity in male Wistar rats. JBRA Assisted Reproduction, 23(4), 336-343. https://doi.org/10.5935/1518-0557.20190038.

Oyeyemi, W. A., Shittu, S. T., Kolawole, T. A., Ubanecheand, P., & Akinola, A. O. (2015). Protective effect of vitamin E on nicotine induced reproductive toxicity in male rats. Nigerian Journal of Basic and Applied Science, 23(1), 7-13.

Oyeyemi W.A., Akinola A.O., Daramola O.O., Aikpitanyi I., Durotoluwa O.T., Alele P.O., Ogieriakhi I.O. & Okoro T.D. (2022). Vitamin E and quercetin attenuated the reproductive toxicity mediated by lead acetate in male Wistar, Bulletin of the National Research Centre, 46:22 https://doi.org/10.1186/s42269-022-00709-z

Sutapa, M. & Analava, M. 2009. Health effects of Palm Oil. J Hum Ecol, 26 (3): 197-203

Vickram, S., Rohini, K., Srinivasan, S., Nancy Veenakumari, D., Archana, K., Anbarasu, K., Jeyanthi, P., Thanigaivel, S., Gulothungan, G., Rajendiran, N., & Srikumar, P. S. (2021). Role of zinc (Zn) in human reproduction: A journey from initial spermatogenesis to childbirth. International Journal of Molecular Sciences, 22(4), 2188. https://doi.org/10.3390/ijms22042188

Wong, W. Y., Flik, G., Groenen, P. M., et al. (2001). The impact of calcium, magnesium, zinc, and copper in blood and seminal plasma on semen parameters in men. Reproductive Toxicology, 15, 131–136.

Yamaguchi, S., Miura, C., Kikuchi, K., Celino, F. T., Agusa, T., Tanabe, S., Miura, T., & Yanagi-machi, R. (2009). Zinc is an essential trace element for spermatogenesis. Proceedings of the National Academy of Sciences, 106(26), 10859–10864. https://doi.org/10.1073/pnas.0900602106

Downloads

Published

09-02-2025

Issue

Section

Original Investigations